Wie Nutzpflanzen Überschwemmungen besser überstehen
Forschende aus Freiburg und Utrecht weisen nach, welche Signalwege Pflanzen widerstandsfähiger bei Überflutungen machen
Sjon Hartman und seine Koopertationspartner*innen fanden in der Ackerschmalwand heraus, über welche Signalwege das Hormon Ethylen im Falle einer Überschwemmung in Pflanzen ein molekulares Notfallprogramm einschaltet. Foto:Iris Hartman/Universität Freiburg
Weltweit nehmen extreme Wetterphänomene zu – häufige Dürren, Brände, aber auch Hochwasser sind Folgen des Klimawandels. Für die Landwirtschaft bedeutet ein überschwemmtes Feld große Verluste: Etwa 15 Prozent der globalen Ernteausfälle gehen auf Überschwemmungen zurück. Als Teil eines Teams aus Freiburg, Utrecht/Niederlande und weiteren Instituten fand Juniorprofessor Dr. Sjon Hartman vom Exzellenzcluster CIBSS – Centre for Integrative Biological Signalling Studies der Universität Freiburg nun heraus, dass ein Signalmolekül Pflanzen widerstandsfähiger gegen Überschwemmungen machen kann. Das gasförmige Pflanzenhormon Ethylen bewirkt, dass die Pflanze eine Art molekulares Notstromsystem anschaltet, das ihr hilft, den Sauerstoffmangel bei Überflutung zu überstehen. Das Team hatte zuvor nachgewiesen, dass Ethylen der Pflanze das Signal übermittelt, dass sie unter Wasser steht. Eine Vorbehandlung der Versuchspflanzen mit dem Hormon verbesserte die Überlebenschancen. Die Ergebnisse, die im Fachjournal Plant Physiology erschienen sind, sollen helfen, in der Landwirtschaft gegen Staunässe und Hochwasser vorzugehen und zum Beispiel widerstandsfähige Pflanzensorten zu entwickeln.
Den Anpassungen an Nässe auf der Spur
Pflanzenarten unterscheiden sich stark in ihrer Fähigkeit, Phasen der Überschwemmung oder Staunässe zu überstehen: „Bei der Kartoffel sterben nach zwei Tagen durch mangelnden Sauerstoff die Wurzeln ab. Reispflanzen sind viel resistenter, sie können ihr ganzes Leben in gefluteten Feldern überleben“, erklärt Hartman. An der Ackerschmalwand Arabidopsis thaliana – einem Modellorganismus der Pflanzenforschung – lassen sich die Gene und Proteine untersuchen, die diese Anpassung ausmachen. „Dass sie von Wasser umgeben sind, merken Pflanzen daran, dass das Gas Ethylen, das alle Pflanzenzellen produzieren, nicht mehr in die Luft entweichen kann“, führt Hartman weiter aus. Das zeigten die Forschenden in vorherigen Studien an der Universität Utrecht. Rezeptoren in der ganzen Pflanze reagieren im Anschluss auf erhöhte Konzentrationen des Hormons.
Überschwemmung mit Sauerstoffentzug simulieren
Das Team simulierte die Überschwemmung, indem sie Keimlinge der Ackerschmalwand unter eine Glocke ohne Licht und Sauerstoff legten. Wenn die Keimlinge zuvor dem Gas Ethylen ausgesetzt waren, überlebten die Zellen der Wurzelspitzen länger. Die behandelten Pflanzen stoppten das Wachstum der Wurzeln und stellten die Energiegewinnung in den Zellen auf sauerstofffreie Stoffwechselvorgänge um. Außerdem bewirkte das Ethylen, dass die Zellen besser gegen schädliche Sauerstoffradikale geschützt waren, die sich bei Sauerstoffmangel in Pflanzen ansammeln. Dies ergaben Analysen von Genaktivitäten und der Proteinzusammensetzung der Zellen.
„Zusammengenommen verbessern diese Umstellungen, die Ethylen auslöst, die Überlebenschancen der Pflanzen während und nach der Überschwemmung“, fasst Hartman zusammen. „Wenn wir diese Signalwege besser verstehen, können wir lernen, Nutzpflanzen widerstandsfähiger gegen Hochwasser zu machen, um dem Klimawandel entgegenzutreten.“
Mehr über die Forschung von Jun.-Prof. Dr. Sjon Hartman bei CIBSS
Über den Exzellenzcluster CIBSS
Der Exzellenzcluster CIBSS – Centre for Integrative Biological Signalling Studies hat das Ziel, ein umfassendes Verständnis von biologischen Signalvorgängen über Skalen hinweg zu gewinnen – von den Wechselwirkungen einzelner Moleküle und Zellen bis hin zu den Prozessen in Organen und ganzen Organismen. Die Forscherinnen und Forscher setzen das gewonnene Wissen ein, um Strategien zu entwickeln, mit denen sich Signale gezielt kontrollieren lassen. Sie erschließen dank dieser Technologien nicht nur neue Erkenntnisse in der Forschung, sondern ermöglichen auch Innovationen in der Medizin und den Pflanzenwissenschaften.
Faktenübersicht:
Pressefoto zum Download
Foto: Iris Hartman /Universität Freiburg
Kontakt:
Jun.-Prof. Dr. Sjon Hartman
Institut für Biologie III, Signalmechanismen in der Pflanzenentwicklung
CIBSS – Centre for Integrative Biological Signalling Studies
Albert-Ludwigs-Universität Freiburg
Tel.:+49 (0) 761/203- 97654
E-Mail: johannes.hartman@biologie.uni-freiburg.de
Annette Kollefrath-Persch
Hochschul- und Wissenschaftskommunikation
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-8909
E-Mail: annette.persch@zv.uni-freiburg.de